Tree Structure for Distributive Lattices and its Applications
نویسندگان
چکیده
From a well-known decomposition theorem, we propose a tree representation for distributive and simplicial lattices. We show how this representation (called ideal tree) can be efficiently computed (linear time in the size of the lattice given by any graph whose transitive closure is the lattice) and compared with respect to time and space complexity. As far as time complexity is concerned, we simply consider the time needed for computations of basic lattice operations such as meet or join and reachability (x < y). Therefore an ideal tree can be considered as a good data structure for a distributive lattice, since for a lattice L = (X,E) it uses 0( 1x1) space and allows computations of reachability, meet and join operations in 0( lJz’(L)l ), where k!(L) denotes the suborder of the meet irreducible elements in L. Furthermore, optimal bit-vector encoding for distributive lattices can be easily derived from this data structure. Relationships with encoding proposed by A%Kaci et al. [3], Caseau [5] are also discussed. Intensive use of this ideal tree allow us to achieve best running time algorithms for most of the applications in which distributive lattices are involved; as for example, constructing the lattice of ideals or generating ideals for a given partial order. Therefore this data structure can be used in many areas such as scheduling theory, in which several algorithms are based on a dynamic programming approach of the lattice of ideals of the precedence ordering; or distributed programming, in which some of the debugging tools rely on the calculation of the lattice of ideals of the causality ordering of the events.
منابع مشابه
Distributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملPriestley Duality for Many Sorted Algebras and Applications
In this work we develop a categorical duality for certain classes of manysorted algebras, called many-sorted lattices because each sort admits a structure of distributive lattice. This duality is strongly based on the Priestley duality for distributive lattices developed in [3] and [4] and on the representation of many sorted lattices with operators given by Sofronie-Stokkermans in [6]. In this...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملTotal graph of a $0$-distributive lattice
Let £ be a $0$-distributive lattice with the least element $0$, the greatest element $1$, and ${rm Z}(£)$ its set of zero-divisors. In this paper, we introduce the total graph of £, denoted by ${rm T}(G (£))$. It is the graph with all elements of £ as vertices, and for distinct $x, y in £$, the vertices $x$ and $y$ are adjacent if and only if $x vee y in {rm Z}(£)$. The basic properties of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theor. Comput. Sci.
دوره 165 شماره
صفحات -
تاریخ انتشار 1996